An Introductory Guide to Databases

Justin Tojeira, April 1, 2019

In this guide, I'll cover the basics of what every aspiring developer should know about databases:
- Databases and database software

- Relational databases and SQL

- SQL tutorials

- Non-relational databases and NoSQL

- Choosing the right database for a project

Databases and database software:

A database is a collection of data that is organized so that it can be easily accessed, managed, and updated.
A DBMS (Database Management System) is the software used to create and manage your database.

Widely-used DBMSs include:

Oracle MySQL SQL Server PostgreSQL (aka Postgres)
MongoDB IBM Db2 Microsoft Access Redis
SQlite Cassandra MariaDB Neo4j

Additionally, cloud database services are available from most major tech companies (Microsoft, Google and Amazon all
have both free and paid cloud storage services).

Most, but not all, of these DBMSs are relational and use SQL. SQL stands for Structured Query Language, and is the
standard language used by relational database management systems (RDBMSs) to manage and access the data. Versions
of SQL used by different RDBMSs may vary slightly, but in general most RDBMSs are pretty similar to each other.

Relational databases and databases that use SQL are not strictly the same, though there is a huge amount of overlap.
While pretty much all relational databases use SQL, some NoSQL (i.e. non-relational) databases can also use SQL for
some purposes. Thus, while NoSQL originally meant “no SQL”, many sources now refer to it as meaning “not only SQL”,
and use “NoSQL” interchangeably with “non-relational”.

Don’t worry if you’re confused. This kind of thing happens all the time in the tech industry. Just keep reading.

Relational databases and SQL:

Relational databases are what most people think of when they think of databases. Relational databases use tables to
organize data and use SQL to access the data. Here is an example of a database table:

Columrlslor fields

hutes of Ad Hyl - | O =
HAME COUNTRY COMTINENT | POPULATION | SQKM_ADMIN | ~
Dac Lac Wietnam Asia 1174010 1833621
[Dladra and Magar Havel India Azla 146584 468955
Daga Bhutan Asla 40220 1062873
Crahwl, Iraq Agia 443959 9312903 I
Darnan & Diu India Asia 107437 130,738
Drarhan M ongolia Hzia 8600 291.074
Dayr az Zawr Syria Asla E21876 27235260
Delhi Ihdia Agia 9324474 1303114
RO Dhaka Bangladesh Agia 6365592 31262.400
Dhawalagin Mepal Hzia 529003 3293.877
Dhi Qar Iraq Asia 975393 14037 630
Dimashg Syria Aszla 3029865 18181.9A1
Dinala Iraq Azia 929035 18230.331
Dinarbakir Turkey Azia 1188603 14740640
Dnepropetraysk kraine Eurape J998727 3721.480
Donetsk kraine Europe h47E6RS 26620520
Dang Mai Wietnam Azia 1733504 E243.254
Diang Thap Wietnanm Azia 1493641 3386422
Darnod M ongolia Hzia 915911 118033.500 - |
Kl | i
Recond: 14] 4 16 k| ¥l Show| Al Selected | Records [0 out of 842 Selected.] Options =
- [=] seia| | _ Dyt |
Maove ta first record — | — Mowve ta last record |
Current record ”ﬂ'.'”t'f" of ﬁelcords. An® Click to find and replace records,
Previgus record — — Mext record :jnet'ec?rﬁég.ba not vet F.EIEET qr:ﬁca?nrdé eraﬁfrll?ﬁg%ﬁi'caoijgr,
! mage fromESRI ? I?g ttahbﬁet,agn?j tgpté\: rg aI:;LI«;}:II Faxbpig;'.:

Relational databases consist of one or more tables, and each table contains any number of records. A record contains
data on a single object, and each record is one row in the table. In the table above, each record describes a geographic
area (like a province/county/district).

This is an example of structured data, which is what relational databases are best used for. Note that each district has a
name, country, continent, population, and sgkm_admin. Furthermore, the name, country, and continent is always text,
while the population and sgkm_admin is always a number. So all records contain the exact same types of data.

Contrast this with if you were trying to pick a vacation destination, and had a stack of travel brochures. Some brochures
might have pictures of beaches and hotels while others might have lists of cultural events and shows. You would have
different kinds of information for each district, and most information wouldn’t be easy to describe using a number or a
few words. This is known as unstructured data, which relational databases are not good for.

You can read more about structured and unstructured data here:
https://www.datamation.com/big-data/structured-vs-unstructured-data.html

And here’s an article about a standard set of properties know as ACID that pretty much all RDBMSs have, and that you
should have basic knowledge of:
https://database.guide/what-is-acid-in-databases/

https://www.datamation.com/big-data/structured-vs-unstructured-data.html
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
https://database.guide/what-is-acid-in-databases/

SQL Tutorials:

Despite the fact that most of the data out there is unstructured, structured data is easier to actually get useful
information from, thus relational databases are still by far the most widely used type of database. And as previously
stated, even NoSQL databases can use SQL for some tasks. Because of that, | highly recommend picking one of the
following SQL tutorials and putting in a few hours to learn some basic SQL.

https://salbolt.com/
Bare bones, concise, gets right to the point, is useful as a basic reference as well.

https://www.w3schools.com/sgl/default.asp
Provides a lot of diagrams and examples, and useful as an in-depth reference.

https://www.khanacademy.org/computing/computer-programming/sql
Video examples and simple exercises, explains a lot beyond just writing queries.

https://www.codecademy.com/learn/learn-sql
A tutorial based around guided hands-on work - interactive lessons, projects, quizzes.

Quick Review:
After going through the tutorial, everything on the first page of this list should be familiar:
https://www.kdnuggets.com/2016/07/database-key-terms-explained.html

Non-relational databases and NoSQL:

Unlike relational databases, NoSQL databases use a variety of methods to organize data. Database.guide does a great job
of outlining the generally agreed upon 4 categories of NoSQL databases. These 5 short articles will give you a solid
understanding of the basics of NoSQL:

https://database.guide/nosql-database-types/

https://database.guide/what-is-a-key-value-database/

https://database.guide/what-is-a-document-store-database/

https://database.guide/what-is-a-column-store-database/

https://database.guide/what-is-a-graph-database/

Choosing the right database for a project:

First, let’s review what you learned so far. If you've gone through this guide up to this point, you should be able to read
and understand these articles, which discuss the pros and cons of different database types:

https://dzone.com/articles/the-types-of-modern-databases
https://www.infoworld.com/article/3240644/what-is-nosqgl-nosql-databases-explained.html

https://sqlbolt.com/
https://www.w3schools.com/sql/default.asp
https://www.khanacademy.org/computing/computer-programming/sql
https://www.codecademy.com/learn/learn-sql
https://www.kdnuggets.com/2016/07/database-key-terms-explained.html
https://database.guide/nosql-database-types/
https://database.guide/what-is-a-key-value-database/
https://database.guide/what-is-a-document-store-database/
https://database.guide/what-is-a-column-store-database/
https://database.guide/what-is-a-graph-database/
https://dzone.com/articles/the-types-of-modern-databases
https://www.infoworld.com/article/3240644/what-is-nosql-nosql-databases-explained.html

Now let’s look at some basic considerations you may have when picking a database for a student project, which may be
different from the considerations a company has when picking a database. You’ll probably be less concerned with things
like scalability and possibly security (unless security is included in the focus of your project), and more concerned with
things like cost (free, please), how easily you can connect your database to the other technologies you’re using, and
where/how to host your database.

Here’s a video where the narrator discusses some of the issues you might consider when choosing a database. The
information he gives is excellent, though he only discusses 4 databases, and is more focused on CAP properties (the
video will explain what they are) than anything else.

https://www.youtube.com/watch?v=v5e PasMdXc

And here’s a different tech professional who bases his choice mostly on how his data is best organized:
https://arcentry.com/blog/choosing-a-database-in-2018/

I’'m going to add one more thing to consider if you’re doing this for a portfolio project: how widely used the database is.
Since one of your main goals will be to gain experience with databases, you should use one that a potential employer is
likely to care about.

To that end, here’s a massive list of DBMSs, ranked by popularity, with in-depth information about all of them:
https://db-engines.com/en/ranking

For an RDBMS, generally speaking your best bets are any of the top 4, possibly MariaDB, or Hive if you’re working with
Hadoop.

And if you decide to go with a NoSQL database, here’s one more article that might help:
https://www.improgrammer.net/most-popular-nosgl-database/

https://www.youtube.com/watch?v=v5e_PasMdXc
https://arcentry.com/blog/choosing-a-database-in-2018/
https://db-engines.com/en/ranking
https://www.improgrammer.net/most-popular-nosql-database/

